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Abstract

Alkylphenols 1-5, potential alarm pheromones of the marine mollitmminoea callidegenitahave been
synthesized using a convergent approach centred on a Stille coupling reaction. © 2000 Elsevier Science Ltd. All
rights reserved.
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Alkylphenols and alkylcatecholk-5 are marine metabolites recently isolated from the cephalaspidean
molluscHaminoea callidegenitd These molecules are particularly interesting because both their origin
and structure strongly suggest a potential role as semiochemicals. In fact, it has been shown that some
metabolites ofHaminoeaspecies, @. 6,2 are responsible for an alarm pheromone based defensive
behaviour. Furthermore, the compounds isolated frbroallidegenitaare clearly structurally related to
navenone C7Y), isolated from the Pacific cephalaspidédawvanax inermisbelonging to the first group
of chemically described alarm pheromones from a marine moflusc.
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Another aspect which makes these molecules mtrlgumg synthetlc targets is related to the interesting
biological activities exhibited by several alkylphenols and alkylcatechols ¢gtgtoxic, antibacterial
and DNA strand scission activitie$)This prompted us to produce adequate quantities of compounds
1-5in order to start a wide bioassay investigation.
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In this paper we describe a synthesis of these molecules using a convergent route in which the key step
is the Stille coupling between the building blocksandB.
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Alkenyl iodides corresponding to blook were prepared starting from protected est@d%and 11
derived from commercially available starting materials such as 4-hydroxydihydrocinn@naind 3,4-
dihydroxydihydrocinnamic9) acids. In particularl0 was obtained from 4-hydroxydihydrocinnamic
acid after Fischer esterification (MeOH»8,) followed by silylation with tert-butyldimethylsilyl
chloride (TBS-CI) and 1,8-diazabicyclo[5.4.0Jundec-7-ene (DBWketal 11 was prepared by treating
the methyl ester, easily obtained from 3,4-dihydroxydihydrocinnamic a®idwith 2,2-dimethoxy

propané.
HO TBSO O
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Our route to alkenyl iodide$4 and 15 is shown in Scheme 1. Est&0 was reduced with LiAlH to
afford the alcoholl2 in quantitative yield. Oxidation of2 with pyridinium dichromate (PDC)gave the
aldehydel3. This was subjected to reaction with chromium(ll) chloride and iodofaoafford a 90:10
mixture of E-alkenyl iodidel4 and itsZ isomer (not shown}? The application of the same procedure to
esterl1gave alkenyl iodidd.5 (41% overall yield fron®, E:Z ratio 90:10)11
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Scheme 1. (a) 1.0 equiv of LIAIH THF, 0°C, 0.5 h 100%; (b) 1.3 equiv of PDC, 3 A molecular sieves,@k rt, 1 h, 71%:;
(c) 6.0 equiv. of CrGl, 2 equiv. of CH4, 1,4-dioxane:THF (6:1), 15°C, 24 h, 72%

The synthesis of the blodR started with hydrostannylatidfiof the THP protected 3-butyn-1-al,
Scheme 2). This reaction afforded the tributylstanna@evhich, after treatment with iodin®, gave
18 (80% vyield, two steps). Enyn&9 was assembled from vinylic iodid&8 and tributyl(ethynyl)tin
using a (CHCN),PdC}b catalyzed Stille coupling reaction (45% vyieldE:Z ratio 95:5). The yield
of 19 was improved with a two step procedure involving a Sonogashira codplofgodide 18 with
(trimethylsilyl)acetylen& (81% yield) followed by removal of the silyl group with tetrabutylammonium
fluoride (TBAF, 72% yieldE:Z ratio 97:3).
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Scheme 2. (a) 0.9 equiv of BBnH, 0.02 equiv of AIBN, toluene, reflux, 4 h (b) 1.0 equiv fCH,Cl;, 0.5 h, 80% (two steps);
(c) 0.07 equiv of (CHCN),PdCb, 1.1 equiv of HCCSnBy 25°C, 0.5 h, DMF, 45%; (d) 2.0 equiv of HCCSiN®.07 equiv of
(CH3CN),PdC), 0.3 equiv of Cul, 2.0 equiv of BN, 0°C, 1 h, 81%, (e) 2.0 equiv of TBAF, THF, rt, 0.5 h, 72%

With enyne 19 in hand, we tried the conventional hydrostannylation rea&fiowith 2,2-
azobis(isobutyronitrile) (AIBN) as radical initiator. Unfortunately this reaction proved to be inefficient
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giving a low yield of21. The enynel9 was successfully metalated with the stannyl cuprate donor,
prepared in situ with CUCNp-BuLi and BySnHZI® The dienylstannan@1'® was thus obtained in
decent yield (60%) and good isomeric puriti€)>97%,*H NMR analysis).

Bu3zSnCu(CN)Li OTHP
19 34()- Bugsn/\/\/\/

THF, -40 °C
21

Finally, alkenyliodidel4, on coupling with stannari&l using Stille’s conditions (Scheme 3), provided,
after careful column chromatography on silica gel, the isomerically enriched @22@5% pure,'H
NMR analysis)”18 Deprotection of the THP group with pyridiniuprtoluenesulfonate (PPTS) and
subsequent acetylation gave the silyl etB@8rRemoval oftert-butyldimethylsilyl group with TBAF in
THF afforded target alkylphend@ in 15% overall yield fromB. Stronger deprotective conditions aa
(PPTS p-TsOH) afforded24 which, after acetylation, gavk(8% overall yield from8).
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Scheme 3. (a) 0.05 equiv. of (GEIN),PdChL, DMF, rt, 0.5 h, 53%; (b) 0.1 equiv. of PPTS, EtOH, 55°C, 7 h, 80%; (c) 4.0 equiv.
of Ac,0, 6.0 equiv. of pyridine, 0.02 equiv. of DMAP, GBI, rt, 2 h, 81%; (d) 0.3 equiv. of PPTS, 0.3 equivTsOH, EtOH,
55°C, 40%; (e) 2.0 equiv. of TBAF, THF, rt, 0.5 h, 95%; (f) 4.0 equiv. 08¢ 6.0 equiv. of pyridine, 0.02 equiv. of DMAP,
CH2C|2, rt, 2 h, 80%

The synthesis of catechadls5 started from the palladium-catalyzed cross-coupfiraf the alkenyl-
iodide 15with the stannan@1 (Scheme 4) to afford, after a careful purification, tri@sg95% purelH
NMR analysis)t”1° Exposure oR5to aqueous acetic acid gave the monoacetylated cat@éh®arget
3 (12% overall yield fromQ) was obtained after acetylation 86. A 1:1 mixture of catechold and5
(9% overall yield from9) was obtained by acetylatir6 using 0.8 equivalents of acetic anhydride.
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Scheme 4. (a) 0.05 equiv. of (GAN),PdCL, DMF, rt, 3 h, 56%; (b) CHCOOH:H,O (8:2), 80°C, 16 h, 63%; (c) 4.0 equiv. of
Ac,0, 6.0 equiv. of pyridine, 0.02 equiv of DMAP, GBI, rt, 2 h, 84%; (d) 0.8 equiv. of A©, 3.0 equiv. of pyridine, CkCl,,
rt, 2 h, 65%

Synthetic compounds-5 showed'H and'3C NMR spectra identical to those reported for the natural
productst An investigation into the biological activities of these compounds is now in progress and the
results will be given in due course.

In conclusion, a straightforward synthetic route to alkylpherigl2 and alkylcatechol$8-5 from

H. callidegenitahas been developed in fair overall yields, starting from quite inexpensive dihydrocin-
namic acid derivative8 and9, using a convergent approach centred on the Stille coupling reaction.
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Compound1: *H NMR (CDCls, 400 MHz): 6.49 (1H, dd,J=18.0, 10.0 Hz), 6.12 (1H, dd=10.0, 15.2 Hz), 6.11 (1H,
d,J=18.0 Hz), 5.67 (1H, dt)=15.2, 7.2 Hz), 4.60 (1H, t]=4.3 Hz), 3.87 (1H, m), 3.77 (1H, m), 3.48 (1H, m), 3.46 (1H,
m), 2.39 (2H, dtJ=7.2, 6.8 Hz), 1.70-1.45 (12H, m), 1.30 (6H, m), 0.88 (15H, ¥§;NMR (CDCk, 100 MHz): 146.9,
135.4,131.7, 129.6, 98.8, 66.9, 62.3, 32.9, 30.7, 293),(27.2 ( 3), 25.5, 19.6, 13.6 (3), 9.5 ( 3).

. The stereochemistry of the triene moiety was deduced from the coupling constants of the higher field protons which were

carefully measured throuditd homodecoupling experiments and comparison of #&eNMR values with literature data
(Wehrli, F. W.; Nishida, TProgr. Chem. Org. Nat. Product979 36, p. 128).

Compoun®2: *H NMR (CDCls, 400 MHz): 7.02 (2H, bdJ=8.4 Hz), 6.74 (2H, bd)=8.4 Hz), 6.17—6.04 (4H, m), 5.70
(1H, dt,J=14.1, 7.0 Hz), 5.68 (1H, dl=14.6, 7.2 Hz), 4.59 (1H, 1=3.6 Hz), 3.86 (1H, m), 3.78 (1H, di=9.7, 7.0 Hz),
3.48 (1H, m), 3.45 (1H, dtJ=9.7, 6.7 Hz), 2.63 (2H, t)=8.3 Hz), 2.38 (4H, m), 1.85-1.50 (6H, m), 0.98 (9H, s), 0.18
(6H, s);3*C-NMR (CDCk, 100 MHz): 153.7, 134.4, 133.7, 132.2, 131.3, 131.0, 130.9, 130.2, 1229 (19.8 ( 2),
98.8, 67.0, 62.3, 35.0, 34.8, 33.2, 30.7, 25.B), 25.5, 19.6, 18.2, -2.8 Q).

. Compound®5: *H NMR (CDCls, 400 MHz):  6.62 (1H, bd,J=8.0 Hz), 6.58 (1H, bd]=8.0 Hz), 6.57 (1H, bs), 6.15-6.06

(4H, m), 5.74-5.65 (2H, m), 4.59 (1H,d=3.8 Hz), 3.86 (1H, m), 3.76 (1H, di=9.7, 7.0 Hz), 3.51 (1H, m) 3.44 (1H, dt,

J=9.7, 6.7 Hz), 2.60 (2H, tJ=8.1 Hz), 2.38 (4H, m), 1.80-1.50 (6H, m), 1.65 (6H, 8 NMR (CDCk, 100 MHz):
147.3,145.5, 134.9, 133.5, 132.2, 131.2, 131.0, 130.8, 130.1, 120.4, 117.4, 108.6, 107.8, 98.7, 66.9, 62.2, 35.5, 34.9, 33.2,
30.6, 25.8 ( 2), 25.4, 19.5.



